非交错的中心龙格库塔方法求解有干湿面的浅水方程组Unstaggered central Runge-Kutta method for shallow water equations with dry-wet fronts
刘敏;李订芳;罗一鸣;董建;
摘要(Abstract):
提出一种具有和谐性、保正性和守恒性的非交错中心格式来求解带有干湿面的浅水方程组。根据间断底部的构造定义上、下水位阈值,再基于交错单元的水位值和水位阈值的大小关系判断非交错单元的干湿状态。对干界面和干湿面处的水位值,通过调整相邻单元的水位斜率使其得到修正,保证了格式的和谐性。采用中心龙格库塔方法和构造本质非振荡线性函数使格式在时间和空间方向均具有二阶精度。最后,通过数值算例验证了格式的和谐性、保正性、守恒性和稳健性。
关键词(KeyWords): 浅水方程组;干湿面;非交错中心格式;和谐格式
基金项目(Foundation): 国家重点基础研究发展计划项目(编号:2017YFC0405901);; 国家自然科学基金项目(编号:51679143)
作者(Authors): 刘敏;李订芳;罗一鸣;董建;
DOI: 10.14188/j.1671-8844.2023-02-003
参考文献(References):
- [1] Nessyahu H, Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws[J]. Journal of Computational Physics,1990,87(2):408-463.
- [2] Canestrelli A, Siviglia A, Dumbser M, et al. Wellbalanced high-order centred schemes for nonconservative hyperbolic systems:applications to shallow water equations with fixed and mobile bed[J].Advances in Water Resources, 2009, 32(6):834-844.
- [3] Touma R. Central unstaggered finite volume schemes for hyperbolic systems:applications to unsteady shallow water equations[J]. Applied Mathematics and Computation,2009,213(1):47-59.
- [4] Jiang G S, Levy D, Lin C T, et al. High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws[J]. SIAM Journal on Numerical Analysis,1998,35(6):2147-2168.
- [5] Touma R. Unstaggered central schemes with constrained transport treatment for ideal and shallow water magnetohydrodynamics[J]. Applied Numerical Mathematics,2010,60(7):752-766.
- [6] Touma R. Well-balanced central schemes for systems of shallow water equations with wet and dry states[J].Applied Mathematical Modelling, 2016, 40(4):2929-2945.
- [7] Chen G X, Noelle S. A new hydrostatic reconstruction scheme based on subcell reconstructions[J]. SIAM Journal on Numerical Analysis,2017,55(2):758-784.
- [8] Dong J, Li D F. An effect non-staggered central scheme based on new hydrostatic reconstruction[J].Applied Mathematics and Computation, 2020, 372:124992.
- [9] Kurganov A, Petrova G. A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system[J]. Communications in Mathematical Sciences,2007,5(1):133-160.
- [10]董建.中心格式在Saint-Venant方程组上的应用研究[J].数学物理学报,2019,39(2):372-385.Dong Jian. Research on the application of central scheme in saint-venant system[J]. Acta Mathematica Scientia,2019,39(2):372-385.
- [11] Bollermann A, Chen G X, Kurganov A, et al. A wellbalanced reconstruction of wet/dry fronts for the shallow water equations[J]. Journal of Scientific Computing,2013,56(2):267-290.
- [12] de Saint-Venant. Théorie du mouvement nonpermanent des eaux, avec application aux crues des rivières etèl′introduction des marées dans leur lit[J].Comptes Rendus de l′Académie des Sciences,1871,73:147-154.
- [13] Audusse E, Bouchut F, Bristeau M O, et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. SIAM Journal on Scientific Computing, 2004, 25(6):2050-2065.
- [14] Kr?ner D. Numerical Schemes for Conservation Laws[M]. Chichester:Wiley,1997.
- [15] Pareschi L, Puppo G, Russo G. Central Runge—Kutta schemes for conservation laws[J]. SIAM Journal on Scientific Computing,2005,26(3):979-999.
- [16] LeVeque R J. Balancing source terms and flux gradients in high-resolution Godunov methods:the quasi-steady wave-propagation algorithm[J].Journal of Computational Physics,1998,146(1):346-365.
- [17] Kurganov A, Levy D. Central-upwind schemes for the Saint-Venant system[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2002, 36(3):397-425.
- [18] Sampson J, Easton A, Singh M. Moving boundary shallow water flow above parabolic bottom topography[J]. ANZIAM Journal,2006,47:373.
- [19] Xing Y L, Zhang X X, Shu C W. Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations[J]. Advances in Water Resources,2010,33(12):1476-1493.
- [20] Touma R. Well-balanced central schemes for systems of shallow water equations with wet and dry states[J].Applied Mathematical Modelling, 2016, 40(4):2929-2945.
- [21] Gallardo J M, Parés C, Castro M. On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas[J]. Journal of Computational Physics,2007,227(1):574-601.