砂土简化边界面本构模型A simplified bounding surface constitutive model for sandy soil
陈锦祎,陈志波,谢永宁,陈前
摘要(Abstract):
基于边界面次塑性模型,简化了模型原始加载和重加载的关系,减少了模型参数,提供了一种适用于描述砂土单向荷载和循环荷载作用下应力路径和应力-应变关系的方法。引进状态参数,从而可用一套参数统一描述不同密度砂土的力学行为。使用Mathematica软件进行简化边界面模型的单元测试,并与试验数据进行对比。结果表明:此简化边界面模型能合理模拟土体复杂的力学行为,包括土体的临界状态、单向和循环荷载下体积变形的变化、应力-应变关系、围压的变化等。
关键词(KeyWords): 砂土;边界面模型;剪胀关系
基金项目(Foundation): 福建省水利厅科技计划项目(编号:MSK201907)
作者(Author): 陈锦祎,陈志波,谢永宁,陈前
DOI: 10.14188/j.1671-8844.2024-03-005
参考文献(References):
- [1]陈国兴.岩土地震工程学[M].北京:科学出版社,2007:289-296.CHEN Guoxing. Geotechnical Earthquake Engineering[M]. Beijing:Science Press, 2007:289-296.
- [2] PASTOR M, ZIENKIEWICZ O C, CHAN A H C.Generalized plasticity and the modelling of soil behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3):151-190.
- [3] WANG Z L, DAFALIAS Y F, SHEN C K.Bounding surface hypoplasticity model for sand[J].Journal of Engineering Mechanics, 1990, 116(5):983-1001.
- [4] BOULANGER R W, ZIOTOPOULOU K. Formulation of a sand plasticity plane-strain model for earthquake engineering applications[J]. Soil Dynamics and Earthquake Engineering, 2013, 53:254-267.
- [5] ZIOTOPOULOU K, BOULANGER R W. Plasticity modeling of liquefaction effects under sloping ground and irregular cyclic loading conditions[J]. Soil Dynamics and Earthquake Engineering, 2016, 84:269-283.
- [6] DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J].Journal of Engineering Mechanics, 2004, 130(6):622-634.
- [7] FANG H L, ZHENG H, ZHENG J. Micromechanicsbased multimechanism bounding surface model for sands[J]. International Journal of Plasticity, 2017, 90:242-266.
- [8]沈珠江.土体应力应变分析中的一种新模型[C]//第五届土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社, 1990:101-105.SHEN Zhujiang. A new model in soil stress-strain analysis[C]//Selected Papers of the Fifth Academic Conference on Soil Mechanics and Foundation Engineering. Beijing:China Construction Industry Press, 1990:101-105.
- [9]王刚,张建民.砂土液化变形的数值模拟[J].岩土工程学报, 2007, 29(3):403-409.WANG Gang, ZHANG Jianmin. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3):403-409.
- [10]童朝霞,张建民,张嘎.考虑应力主轴循环旋转效应的砂土弹塑性本构模型[J].岩石力学与工程学报,2009, 28(9):1918-1927.TONG Zhaoxia, ZHANG Jianmin, ZHANG Ga. An elastoplastic constitutive model of sands considering cyclic rotation of principal stress axes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1918-1927.
- [11]王兴,孔亮,李学丰.砂土非共轴本构模型及其在地基承载力方面的应用[J].岩土工程学报, 2020, 42(5):892-899.WANG Xing, KONG Liang, LI Xuefeng. Threedimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J].Chinese Journal of Geotechnical Engineering, 2020, 42(5):892-899.
- [12] WANG Z L, MA F G. Bounding surface plasticity model for liquefaction of sand with various densities and initial stress conditions[J]. Soil Dynamics and Earthquake Engineering, 2019, 127:105843.
- [13] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2):99-112.
- [14] LI X S, WANG Y. Linear representation of steadystate line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12):1215-1217.
- [15] VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2):81-91.
- [16] TOWHATA I, ISHIHARA K. Undrained strength of sand undergoing cyclic rotation of principal stress axes[J]. Soils and Foundations, 1985, 25(2):135-147.