基于聚类的多维数据交叉融合的台区网格化划分方法Grid division method of substation area based on clustering multi-dimensional data crossing and integration
王书峰;蒋宇飞;许贤泽;包小千;
摘要(Abstract):
针对常规台区网格化方法不涉及电力设备运行相关信息且不能自动更新已建成台区配电网最低层级电网网格的问题,为满足台区电网优化调度的需求,提出一种基于聚类的多维数据交叉融合的台区网格化划分方法。综合用电单位负荷记录、报修数据、台区气候情况等多维数据,结合CLARANS(clustering large application based upon randomized search)聚类、Chameleon聚类方法的特点,优化台区网格划分结果。实验结果表明:所提的划分方法更加适用于台区电网调度,实现了已建成台区配电网最低层级网格划分的自动化处理,提升了网格化规划的实用性、有效性。
关键词(KeyWords): 台区网格化;配电网管理;聚类算法;多维数据融合
基金项目(Foundation): 国家自然科学基金面上项目(编号:51975422)
作者(Authors): 王书峰;蒋宇飞;许贤泽;包小千;
DOI: 10.14188/j.1671-8844.2023-02-012
参考文献(References):
- [1]任泓宇,王主丁,张超,等.高压配电网网格化规划优化模型和方法[J].电力系统自动化. 2019, 43(14):151-158.Ren Hongyu, Wang Zhuding, Zhang Chao, et al. Optimization model and method for mesh planning for highvoltage distribution network[J]. Automation of Electric Power Systems, 2019, 43(14):151-158.
- [2]明煦,王主丁,王敬宇,等.基于供电网格优化划分的中压配电网规划[J].电力系统自动化, 2018, 42(22):159-164,186.Ming Xu, Wang Zhuding, Wang Jingyu, et al.Medium-voltage distribution network planning based on mesh optimization generation[J]. Automation of Electric Power Systems, 2018, 42(22):159-164,186.
- [3]姚刚,仲立军,张代红.复杂城市配电网网格化供电组网方式优化研究及实践[J].电网技术, 2014, 38(5):1297-1301.Yao Gang, Zhong Lijun, Zhang Daihong. Research and practice of mesh-networking optimization for power supply by complex urban distribution network[J]. Power System Technology, 2014, 38(5):1297-1301.
- [4]李阳,郇嘉嘉,曹华珍,等.基于综合能源协同优化的配电网规划策略[J].电网技术, 2018, 42(5):1393-1400.Li Yang, Huan Jiajia, Cao Huazhen, et al. Distribution network planning strategy based on integrated energy collaborative optimization[J]. Power System Technology, 2018, 42(5):1393-1400.
- [5]梁浚杰,兰飞,黎静华.以光伏为主的配电网储能容量需求的网格化场景评估方法[J].电力系统自动化,2018, 42(23):40-47,85.Liang Junjie, Lan Fei, Li Jinghua. Gridding scenario evaluation method for energy storage capacity demand of photovoltaic based distribution network[J]. Automation of Electric Power Systems, 2018, 42(23):40-47,85.
- [6]张连耀.基于网格化的粤桂合作区电力规划设计[D].长春:吉林大学, 2020.Zhang Lianyao. Grid design of power planning in the Guangdong-Guangxi cooperation zone[D]. Changchun:Jilin University, 2020.
- [7]杜敏,赵一.网格化,首都配网发展的新坐标[J].国家电网, 2014,(3):100-102.Du Min, Zhao Yi. Grid, the new coordinate of capital distribution network development[J]. State Grid, 2014,(3):100-102.
- [8]华蕾.基于网格化规划的上饶市经济技术开发区电力需求预测[D].北京:华北电力大学, 2018.Hua Lei. Forecast of power demand in Shangrao economic and technological development zone based on grid planning[D]. Beijing:North China Electric Power University, 2018.
- [9]杨丰任.基于负荷聚类分块的中压配网网格化规划方法和自动布线算法[D].重庆:重庆大学, 2016.Yang Fengren. Load clustering based mesh planning method and routing algorithm for medium voltage distribution networks[D]. Chongqing:Chongqing University, 2016.
- [10] Wu K H, Sun D L, Li X L, et al. Study of GISoriented graphical management system for power grid planning based on cloud service[C]//2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis(ICCCBDA). New York:IEEE Press,2017:504-508.
- [11] Abdeyazdan M. Data clustering based on hybrid Kharmonic means and modifier imperialist competitive algorithm[J]. The Journal of Supercomputing, 2014, 68(2):574-598.
- [12] Ng R T, Han J W. CLARANS:a method for clustering objects for spatial data mining[J]. IEEE Transactions on Knowledge and Data Engineering,2002,14(5):1003-1016.
- [13]翁旭.基于Spark的CLARANS算法并行化实现及优化[D].杭州:浙江大学,2018.Weng Xu. The parallelization and optimization of CLARANS algorithm based on Spark[D]. Hangzhou:Zhejiang University, 2018.
- [14] Karypis G, Han E H, Kumar V. Chameleon:hierarchical clustering using dynamic modeling[J].Computer,1999,32(8):68-75.
- [15]曹鹤玲,姜淑娟.基于Chameleon聚类分析的多错误定位方法[J].电子学报,2017,45(2):394-400.Cao Heling, Jiang Shujuan. Multiple-fault localization based on Chameleon clustering[J]. Acta Electronica Sinica, 2017,45(2):394-400.
- [16]王鹏宇,王国宇,贾贞,等.一种基于局部特征的层次聚类算法[J].中国海洋大学学报(自然科学版),2019,49(S2):176-184.Wang Pengyu, Wang Guoyu, Jia Zhen, et al. A hierarchical clustering algorithm based on local features[J].Periodical of Ocean University of China, 2019,49(S2):176-184.