天然河道分级恒定流数学模型的适用性问题Applicability of a quasi-steady flow model for natural river channels
姚鹏程;夏春晨;梁慧;曹志先;
摘要(Abstract):
应用有限差分法离散分级恒定流数学模型和有限体积法离散非恒定流数学模型,以长江中游宜昌至汉口段为实例,对水位、流量、含沙量和河床冲淤量进行计算分析。结果表明:从上游至下游,分级恒定流数学模型与非恒定流数学模型的计算水位差异有减小的趋势,流量差异则逐渐增大,洪峰和沙峰到达时间比非恒定流数学模型的计算结果提前,含沙量、河床冲淤量和河床高程在部分断面与非恒定流数学模型的结果存在明显差异;随着计算河段的缩短,差异略有减小;随着计算历时的增加,河床冲淤量和河床高程计算差异持续增加。分级恒定流数学模型的计算耗时更长,且计算河段和历时越长,2个模型计算耗时相差越大。建议谨慎应用分级恒定流数学模型。
关键词(KeyWords): 分级恒定流;非恒定流;水沙输移
基金项目(Foundation): 国家自然科学基金项目(编号:11672212)
作者(Authors): 姚鹏程;夏春晨;梁慧;曹志先;
DOI: 10.14188/j.1671-8844.2023-02-001
参考文献(References):
- [1]谢鉴衡.河流模拟[M].北京:水利电力出版社,1990:1-6.Xie Jianheng, River Simulation[M]. Beijing:Water Resources and Electric Power Press, 1990:1-6.
- [2]王光谦.河流泥沙研究进展[J].泥沙研究,2007,(2):64-81.Wang Guangqian. Advances in river sediment research[J]. Journal of Sediment Research,2007,(2):64-81.
- [3]谢鉴衡,魏良琰.河流泥沙数学模型的回顾与展望[J].泥沙研究,1987,(3):1-13.Xie Jianheng, Wei Liangyan. Review and prospect of mathematical models for river sedimentation[J]. Journal of Sediment Research,1987,(3):1-13.
- [4]李义天.河道平面二维泥沙数学模型研究[J].水利学报,1989,20(2):26-35.Li Yitian. A study on two-dimensional mathematical modelling of river sediment transport[J]. Journal of Hydraulic Engineering,1989,20(2):26-35.
- [5] Wu W M. Computational River Dynamics[M]. London:Taylor&Francis,2008.
- [6] Capart H, Young D L. Formation of a jump by the dambreak wave over a granular bed[J]. Journal of Fluid Mechanics,1998,372:165-187.
- [7] Cao Z, Pender G, Wallis S, et al. Computational dambreak hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering,2004,130(7):689-703.
- [8] Wu W M, Wang S S. One-dimensional modeling of dam-break flow over movable beds[J]. Journal of Hydraulic Engineering,2007,133(1):48-58.
- [9] Huang W, Cao Z X, Yue Z Y, et al. Coupled modelling of flood due to natural landslide dam breach[J]. Proceedings of the Institution of Civil EngineersWater Management,2012,165(10):525-542.
- [10] Huang W, Cao Z X, Carling P, et al. Coupled 2D hydrodynamic and sediment transport modeling of megaflood due to glacier dam-break in Altai Mountains, Southern Siberia[J]. Journal of Mountain Science,2014,11(6):1442-1453.
- [11]李义天,尚全民.一维不恒定流泥沙数学模型研究[J].泥沙研究,1998,(1):81-87.Li Yitian, Shang Quanmin. Modeling of sediment transport in unsteady flow[J]. Journal of Sediment Research,1998,(1):81-87.
- [12] Zhou J, Lin B. Verification of mathematical model for sediment transport by unsteady flow in the lower yellow river[J]. International Journal of Sediment Research,2004,(4):278-291.
- [13] Krishnappan B G. Comparison of MOBED and HEC-6river flow models[J]. Canadian Journal of Civil Engineering,1985,12(3):464-471.
- [14]周宇,钱红露,曹志先,等.冲积河流分级恒定水沙数学模型的适用性研究[J].武汉大学学报(工学版),2018,51(5):377-382.Zhou Yu, Qian Honglu, Cao Zhixian, et al. Applicability of a quasi-steady flow model for alluvial rivers[J].Engineering Journal of Wuhan University, 2018, 51(5):377-382.
- [15] Cao Z X, Meng J, Pender G, et al. Flow resistance and momentum flux in compound open channels[J].Journal of Hydraulic Engineering, 2006, 132(12):1272-1282.
- [16] Parker G. Selective sorting and abrasion of river gravel.I:theory[J]. Journal of Hydraulic Engineering, 1991,117(2):131-147.
- [17] Wu W M, Wang S S Y, Jia Y F. Nonuniform sediment transport in alluvial rivers[J]. Journal of Hydraulic Research,2000,38(6):427-434.
- [18] Toro E F. Shock-Capturing Methods for Free-Surface Shallow Flows[M]. Chichester:John Wiley,2001.
- [19]吴伟明,胡春燕,杨国录.平面二维水沙数学模型[J].水利学报,1995,26(10):40-46.Wu Weiming, Hu Chunyan, Yang Guolu. Twodimensional mathematical model of water and sediment[J]. Journal of Hydraulic Engineering, 1995, 26(10):40-46.