基于时间同步优化和特征筛选的无人机单目视觉惯导联合定位方法Method of UAV monocular visual-inertial navigation joint locating based on time synchronization optimization and feature screening
谭立超;
摘要(Abstract):
针对全球定位系统(global positioning system,GPS)/北斗失能场景下无人机无法正常定位工作的情况,提出了一种基于单目相机和惯性传感器的状态估计方法。该方法采用单目相机和惯性测量单元(inertial measurement unit,IMU)联合估计无人机6自由度状态,通过运动建模迭代优化图像和IMU时间同步偏差,并以DBSCAN(density-based spatial clustering of applications with noise)聚类筛选鲁棒的视觉特征,用于提高定位精度、减少计算时间。在公共数据集上将所提方法与现有典型算法进行对比,结果表明,所提方法在定位精度与计算时间上取得了较优平衡。
关键词(KeyWords): 运动建模;特征筛选;状态估计;单目视觉惯导系统;无人机
基金项目(Foundation):
作者(Authors): 谭立超;
DOI: 10.14188/j.1671-8844.2023-02-014
参考文献(References):
- [1] Takahashi M, Kobayashi K, Watanabe K, et al.Development of prediction based emergency obstacle avoidance module by using LIDAR for mobile robot[C]//2014 Joint 7th International Conference on Soft Computing and Intelligent Systems(SCIS)and 15th International Symposium on Advanced Intelligent Systems(ISIS). New York:IEEE Press, 2015:561-564
- [2] Mur-Artal R, Montiel J M M, Tardós J D. ORBSLAM:a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.
- [3] Hesch J A, Kottas D G, Bowman S L, et al.Consistency analysis and improvement of vision-aided inertial navigation[J]. IEEE Transactions on Robotics,2014, 30(1):158-176.
- [4] Indelman V, Williams S, Kaess M, et al. Information fusion in navigation systems via factor graph based incremental smoothing[J]. Robotics&Autonomous Systems,2013, 61(8):721-738.
- [5] Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics&Automation Letters, 2017, 2(2):796-803.
- [6] Leutenegger S, Lynen S, Bosse M, et al. Keyframebased visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015,34(3):314-334.
- [7] Fu Z H, Quo Y, Lin Z P, et al. FSVO:Semi-direct monocular visual odometry using fixed maps[C]//2017IEEE International Conference on Image Processing(ICIP).New York:IEEE Press,2017:2553-2557.
- [8] Qin T, Li P L, Shen S J. VINS-Mono:a robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics, 2018, 34(4):1004-1020.
- [9] Galvez-López D, Tardos J D. Bags of binary words for fast place recognition in image sequences[J]. IEEE Transactions on Robotics, 2012, 28(5):1188-1197.
- [10] Calonder M, Lepetit V, Strecha C, et al. Brief:binary robust independent elementary features[C]//11th European Conference on Computer Vision. Berlin:Springer, 2010:778-792.
- [11] Usenko V, Engel J, Stückler J, et al. Direct visualinertial odometry with stereo cameras[C]//2016 IEEE International Conference on Robotics and Automation.New York:IEEE Press, 2016:1885-1892.
- [12] Huang A S, Bachrach A, Henry P, et al. Visual odometry and mapping for autonomous flight using an RGB-D camera[J]. Springer Tracts in Advanced Robotics, 2011,10:235-252.
- [13] Rosten E, Porter R, Drummond T. Faster and better:a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1):105-119.
- [14] Burri M, Nikolic J, Gohl P, et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robotics Research, 2016, 35(10):1157-1163.
- [15] Mur-Artal R, Tardós J D. ORB-SLAM2:an opensource SLAM system for monocular, stereo,and RGBD cameras[J]. IEEE Transactions on Robotics, 2017,33(5):1255-1262.
- [16]林辉灿,吕强,卫恒,等.基于VI-SLAM的四旋翼自主飞行与三维稠密重构[J].光学学报,2018, 38(7):223-230.Lin Huican, LüQiang, Wei Heng, et al. Quadrotor autonomous flight and three-dimensional dense reconstruction based on VI-SLAM[J]. Acta Optica Sinica,2018,38(7):223-230.
- [17]王化友,代波,何玉庆. CFD-SLAM:融合特征法与直接法的快速鲁棒SLAM系统[J].高技术通讯,2019,29(12):1224-1238.Wang Huayou, Dai Bo, He Yuqing. CFD-SLAM:a fast and robust SLAM system combining feature-based method and direct method[J]. Chinese High Technology Letters, 2019,29(12):1224-1238.